
Towards Trustworthy
In-IDE AI Coding Assistants

Yunbo Lyu
PhD Candidate at SMU

Sep 8th,2025 at NUS, TEST Lab

Self-Introduction

2

LYU Yunbo

吕 允 博

Lyu (吕) -> Family Name

Yun (允) -> Promise

Bo (博) -> erudite, broad-minded

Doctor (PhD)

I promise to become a Doctor!

3rd-year PhD candidate and research

engineer at SMU (supervised by Prof.

David Lo)

Self-Introduction

3

Software Supply Chain Root Cause of the Bug

Testing AI Systems
Trustworthy In-IDE

AI-Coding Assistants

• Analyzing vulnerability reports
[ICSE 23’]

• Fuzz libraries to find bugs
(result over 20 CVE IDS)

• Detecting bias in text-to-image
models [MM 25’]

• Usability - Understanding what
developers truly value and criticize
[ASE 25’]

• Security - Prompt-injection attacks
on agentic AI coding assistants

• Evaluating and improving SZZ
algorithms [TSE 24’]

• Understanding how SZZ identifies
vulnerability-inducing commits

Remark: Items in italics denote collaborative works.

Trustworthy

4

First systematic literature review

on non-functional properties

6 Properties

From 146 papers

“Robustness, Security,

Privacy, Explainability,

Efficiency, Usability”

Yang, Zhou, Zhensu Sun, Terry Zhuo Yue, Premkumar Devanbu, and David Lo. "Robustness,
security, privacy, explainability, efficiency, and usability of large language models for code."

arXiv preprint arXiv:2403.07506 (2024).

Usability of
In-IDE AI Coding Assistants

Integrated Development Environment (IDE)

6

What IDE do you currently use?

Integrated Development Environment (IDE)

7

Mature with the AI Coding Assistants

8

October 2021 November 2022

The Shift in Programming Interaction

9

Coding Area

Interact with the AI coding assistant

The Shift in Programming Interaction

10

Code Completion

Chat Interface

Agent Mode

Perform Good - Benchmark

11

Perform good on the benchmark.

Over 291 benchmarks for evaluating LLMs in SE Tasks

Hu, Xing, Feifei Niu, Junkai Chen, Xin Zhou, Junwei Zhang, Junda He, Xin Xia, and David Lo. "Assessing and
Advancing Benchmarks for Evaluating Large Language Models in Software Engineering Tasks." arXiv preprint
arXiv:2505.08903 (2025).

Perform Good - News

12

“In a software development company, AI can
boost productivity and speed by 20-50%.”

(source: 10 ways GenAI improves software

development, Pwc, 2024)

“Software developers can complete coding
tasks up to twice as fast with generative AI.”

(source: Unleashing developer productivity with

generative AI, MaKinsey Digital, 2023)

Research Question

13

With the boost of AI Coding Assistants,

how do users perceive them?

Research Question

14

With the boost of AI Coding Assistants, how
do users perceive them?

Boost in productivity?

Research Question

15

With the boost of AI Coding Assistants, how
do users perceive them?

Find a Solution?

Research Question

16

With the boost of AI Coding Assistants, how
do users perceive them?

Distracted?

Both in Academia the Industry Curious

17

October 2021

CHI 2022 Citations: 871

Vaithilingam, Priyan, Tianyi Zhang, and Elena L. Glassman. "Expectation vs. experience:

Evaluating the usability of code generation tools powered by large language models." In Chi

conference on human factors in computing systems extended abstracts, pp. 1-7. 2022.

1. Expectation vs. Experience

18

Problem

AI coding assistants’ real-world usability and how they
fit into a developer’s workflow.

Method

• User study (N=24) comparing Copilot vs. VS Code’s
IntelliSense across three Python tasks (easy/medium/hard).

• Measured task success, completion time, and subjective
preferences.

1. Expectation vs. Experience – Key Findings

19

No significant boost in completion time or success rate
with Copilot vs. IntelliSense.

Strong preference for Copilot (19/24), because it:
• Provides a useful “jump-start” snippet instead of a blank

editor
• Cuts down on web searches for boilerplate code

Usability hurdles hinder effectiveness:
• Difficult to understand, debug, and edit large AI-

generated code blocks
• Cognitive overload when navigating multi-line suggestions

2. Evidence from GitHub Copilot

20

GitHub 2023, Citations: 582

Peng, Sida, Eirini Kalliamvakou, Peter Cihon, and Mert Demirer. "The impact of ai on developer

productivity: Evidence from github copilot." arXiv preprint arXiv:2302.06590 (2023).

Findings: 55.8% faster task completion with Copilot

3. Grounded Copilot

21

Interactions with programming assistants are bimodal:

In acceleration mode, the programmer knows what to do
next and uses Copilot to get there faster;
In exploration mode, the programmer is unsure how to
proceed and uses Copilot to explore their options.

Barke, Shraddha, Michael B. James, and Nadia Polikarpova. "Grounded copilot: How

programmers interact with code-generating models." Proceedings of the ACM on Programming

Languages 7, no. OOPSLA1 (2023): 85-111.

OOPSLA 2023 Citations: 458

4. Reading Between the Lines

22

CHI 2024 Citations: 147

Goals
Introduce and validate CUPS (CodeRec
User Programming States), a
taxonomy and behavioral model of
how developers interact with AI code
recommendation tools (e.g., Copilot).

Method
Grounded-theory labeling: 21
programmers retroactively annotate
3,137 “telemetry segments” of their
real Copilot sessions

CUPS taxonomy defines 12 states
(e.g., Prompt Crafting, Verifying
Suggestion, Writing New Functionality)

4. Reading Between the Lines – Key Findings

23

Verification dominates:
“Thinking/Verifying Suggestion” alone
consumes 22.4% of session time

Deferred verification is common:
many acceptances are immediately
followed by post-accept reviews,
inflating true acceptance costs

Half the session (51.5%) was spent
in Copilot-specific states (prompting,
deferring, waiting, editing
suggestions)

Mozannar, Hussein, Gagan Bansal, Adam Fourney, and Eric Horvitz. "Reading between the

lines: Modeling user behavior and costs in AI-assisted programming." In Proceedings of the

2024 CHI Conference on Human Factors in Computing Systems , pp. 1-16. 2024.

5. A Large-Scale Survey

24

Liang, Jenny T., Chenyang Yang, and Brad A. Myers. "A large-scale survey on the usability

of ai programming assistants: Successes and challenges." In Proceedings of the 46th

IEEE/ACM international conference on software engineering, pp. 1-13. 2024.

Core Goal
Understand, at scale, why developers choose (or avoid) AI
programming assistants and what usability challenges they face

Method
Surveyed 410 real-world developers across Copilot, Tabnine, ChatGPT,
CodeWhisperer, etc., combining quantitative rankings and open-ended
feedback

ICSE 24 Citations: 197

5. A Large-Scale Survey – Key Findings

25

Liang, Jenny T., Chenyang Yang, and Brad A. Myers. "A large-scale survey on the usability

of ai programming assistants: Successes and challenges." In Proceedings of the 46th

IEEE/ACM international conference on software engineering, pp. 1-13. 2024.

Motivation for using
• Autocomplete & keystroke

reduction (86%)
• Speed up tasks (76%)
• Recall syntax without web

search (68%)

Motivation for not using:
• Generated code fails to meet

requirements (54%)
• Hard to control what the tool

outputs (48%)

Top usability issues
• What input led to this suggestion?

(30% often)
• Giving up and rewriting tool-

generated code (28%)
• Code generation tool’s suggestions

are too distracting (23% often)

6. Using AI-based coding assistants in practice

26

Core Goal
Conduct a large-scale survey (N = 481) to map exactly where,
how, and why developers use (or avoid) AI coding assistants across
the full software development lifecycle

Five key activities and their stages:
(1) Implementing new features; (2) Writing tests; (3) Bug triaging;
(4) Refactoring; (5) Writing natural-language artifacts

Main Findings:
Implementing new features is the most enjoyable and the least
likely to be delegated to an assistant, while writing tests and
writing natural-language artifacts are the most unpleasant and
the most likely to be delegated.

7. Problems, Causes and Solutions

27

Core goal: Systematically characterize the real-world problems, their
root causes, and practical solutions encountered by developers using
GitHub Copilot as an “AI pair programmer.”

Data sources: 473 GitHub Issues, 706 GitHub Discussions, and 142
Stack Overflow posts, qualitatively analyzed via grounded coding into
taxonomies of problems, causes, and fixes.

7. Problems, Causes and Solutions

28

Motivation

29

1. Focus only on GitHub Copilot, ignoring the broader
ecosystem.

2. Taxonomies rely on GitHub Issues / Stack Overflow,
highlighting only advanced users’ problems.

3. Novice users’ voices (e.g., VS Code Marketplace reviews)
are overlooked but essential to capture real perceptions.

"My productivity is boosted, but ..."

Demystifying Users’ Perception on
AI Coding Assistants

Accepted at ASE 2025

Yunbo Lyu, Zhou Yang, Jieke Shi, Jianming Chang, Yue Liu, David Lo

Integrated Development Environment (IDE)

31

https://survey.stackoverflow.co/2025/

Integrated Development Environment (IDE)

32

75.9% of developers use VS Code as
their primary IDE.

VS Code Marketplace

33

Thousands of AI Coding assistants in the VS Code marketplace.

AI Coding Assistant

34

Collecting the AI Coding Assistants

35

66,053 1,962

96.37% precision
96.88% recall

1,085

VS Code AI Coding Assistants

36

1.64% of all extensions on the VS Code Marketplace

AI extensions have seen rapid growth in recent years

Labeling Taxonomy

37

Sampled 361 user reviews from 32 popular assistants.

Conduct a Hybrid card sorting:
• Started with five predefined top-level categories
• Then use bottom-up consolidation
• Iterative Coding

Labeling Taxonomy

38

Developed a 3-level taxonomy
(8 categories, 16 subcategories, 62 labels).

Taxonomy

39

What Do Users Like and Dislike?

40

Finding 1

41

1. Productivity Boost is Real—but Not Universal
• Most users report productivity gains, especially novices.
• Experienced developers are more critical.

“not having to type every single repetitive function out or
imports” (R94, 5✰).

“I am a beginner programmer, and it is helping me a lot to
build a project” (R319, 5✰).

“For anyone who really knows how to code, save yourself a
lot of frustration” (R14, 1✰).

Finding 2

42

2. Suggestion Quality is the Top Concern
• Accurate suggestions are highly valued.
• Users dislike redundancy, incompleteness, and buggy outputs.

“80% less keyboard touching. Autocomplete is pure magic.
Feels like it’s connected directly to your mind” (R164, 5✰).

“Constantly barfs words on the screen, 90+% is repetitive.”
(R14, 1✰)

“it only predicts one character for me” (R34, 1✰).

Finding 3

43

3. Context Awareness is a Major Weakness
• Assistants can interpret code but struggle to fetch or retain context,

especially at the Repository level.

“[assistant] forgets context on next question and answers
irrelevantly even for simple questions” (R22, 1✰).

“[assistant] still doesn’t see the class definitions in files
that aren’t open” (R1, 1✰).

Finding 4

44

4. Usability Matters
• Poor onboarding and intrusive interface elements can deter users.

“Setup process is bloated. I’ll wait until they make the
process more streamlined.” (R265, 1✰).

“While [assistant] aims to simplify coding, some users
might find it challenging to adapt to the AI’s suggestions
and functionality, especially if they’re used to traditional
coding practices.” (R240, 4✰).

“Annoyed suggestions show up at the top”, “Focus doesn’t
work, making chat useless...frustrated, don’t use this
extension.” (R312, 1✰).

“Messed so much with my code” (R7, 3✰).

Finding 4 - Cursor

45

Unpredictably hijack
by the cursor

Input intended for the code
editor is redirected to the
chat window.

https://www.reddit.com/r/Codeium/comments/1es4pdo/

Finding 4 - Cursor

46

Finding 5

47

5. Resource Consumption is a Pain Point
• Users appreciate fast response time but complain about high

CPU/memory usage.

Uses too many resources—over 50% CPU and more than 1 GB
memory” (R125, 1✰).

“The extension’s performance can sometimes slow down the
editor, especially when working on larger files or multi-projects”
(R306, 5✰).

Finding 6

48

6. Pricing and Ethics Influence Adoption
• Users prefer free tools and criticize the monetization of open-

source trained models.

“It’s a wonderful free alternative of paid AI code assistants”

“Was cool to try out but too expensive now. You are using
our code to make money. So, pass for now...but I think you
should have a free version (since it’s using open source)”
(R42, 1✰).

Open Question

49

How can we better define the usability of AI coding assistants?

Or of other AI techniques that involve humans in the loop?

“The extent to which a system, product or service can be used by
specified users to achieve specified goals with effectiveness,
efficiency and satisfaction in a specified context of use” (ISO 9241)

Security of
In-IDE AI Coding Assistants

Both IDEs and Agentic AIs Pose Risks

51

❑ IDE environments themselves are relatively safe
• NDSS - 2024

❑ Agentic AI coding assistants introduce new safety risks
• Recent Submission

Security Issue of IDE

52

NDSS 2024 Distinguished Paper Award Winners

Untrust IDE

53

Taint Analysis

54

Use CodeQL with 12 custom SAST rules to identify and verify
code execution vulnerabilities in 21 extensions that amount
to over 6 million installations.

Prompt-Injection attacks on AI coding assistants

55

https://arxiv.org/pdf/2509.22040

Example

56

Developers download a JavaScript coding rule file online and
import it into their IDE workspace, then the Cursor is
manipulated to exfiltrate API keys from the codebase.

Some Results

57

Benchmark payloads: 314 attack payloads covering 70
MITRE ATT&CK techniques; scenarios in TS /Python/C++/JS.

Future Work

58

Gao, Xuanqi, Juan Zhai, Shiqing Ma,
Siyi Xie, and Chao Shen. "ASSURE:
Metamorphic Testing for AI-powered
Browser Extensions." arXiv preprint
arXiv:2507.05307 (2025).

Future Work

59

Software process
• How do current developers build AI coding assistants—from

requirements to design, testing, and deployment—and how do
different teams coordinate and communicate throughout this
process?

Repository-Level Context
• How can AI coding assistants more effectively fetch, retain,

and utilize project-level context at the repository scale?

IDE Plugins Security
• What are the security implications of the downstream

ecosystem of AI coding assistants, given that many IDE
plugins are inherited from the VS Code marketplace?

Hope it sparks!

Questions are welcome.

Contact: Yunbo Lyu
Email:
yunbolyu@smu.edu.sg
Personal Website:
https://yunbolyu.github.io

WeChatLinkedIn

mailto:yunbolyu@smu.edu.sg

	Default Section
	Slide 1: Towards Trustworthy In-IDE AI Coding Assistants
	Slide 2: Self-Introduction
	Slide 3: Self-Introduction
	Slide 4: Trustworthy
	Slide 5: Usability of In-IDE AI Coding Assistants
	Slide 6: Integrated Development Environment (IDE)
	Slide 7: Integrated Development Environment (IDE)
	Slide 8: Mature with the AI Coding Assistants
	Slide 9: The Shift in Programming Interaction
	Slide 10: The Shift in Programming Interaction
	Slide 11: Perform Good - Benchmark
	Slide 12: Perform Good - News
	Slide 13: Research Question
	Slide 14: Research Question
	Slide 15: Research Question
	Slide 16: Research Question
	Slide 17: Both in Academia the Industry Curious
	Slide 18: 1. Expectation vs. Experience
	Slide 19: 1. Expectation vs. Experience – Key Findings
	Slide 20: 2. Evidence from GitHub Copilot
	Slide 21: 3. Grounded Copilot
	Slide 22: 4. Reading Between the Lines
	Slide 23: 4. Reading Between the Lines – Key Findings
	Slide 24: 5. A Large-Scale Survey
	Slide 25: 5. A Large-Scale Survey – Key Findings
	Slide 26: 6. Using AI-based coding assistants in practice
	Slide 27: 7. Problems, Causes and Solutions
	Slide 28: 7. Problems, Causes and Solutions
	Slide 29: Motivation
	Slide 30: "My productivity is boosted, but ..." Demystifying Users’ Perception on AI Coding Assistants
	Slide 31: Integrated Development Environment (IDE)
	Slide 32: Integrated Development Environment (IDE)
	Slide 33: VS Code Marketplace
	Slide 34: AI Coding Assistant
	Slide 35: Collecting the AI Coding Assistants
	Slide 36: VS Code AI Coding Assistants
	Slide 37: Labeling Taxonomy
	Slide 38: Labeling Taxonomy
	Slide 39: Taxonomy
	Slide 40: What Do Users Like and Dislike?
	Slide 41: Finding 1
	Slide 42: Finding 2
	Slide 43: Finding 3
	Slide 44: Finding 4
	Slide 45: Finding 4 - Cursor
	Slide 46: Finding 4 - Cursor
	Slide 47: Finding 5
	Slide 48: Finding 6
	Slide 49: Open Question
	Slide 50: Security of In-IDE AI Coding Assistants
	Slide 51: Both IDEs and Agentic AIs Pose Risks
	Slide 52: Security Issue of IDE
	Slide 53: Untrust IDE
	Slide 54: Taint Analysis
	Slide 55: Prompt-Injection attacks on AI coding assistants
	Slide 56: Example
	Slide 57: Some Results
	Slide 58: Future Work
	Slide 59: Future Work
	Slide 60

